Next Generation PDISE

Capabilities of Interest

- Auto load shedding
- Phase balancing
- Auto paralleling
- No-break load transfer
- Datalogging

Prototype PDISE Concepts

Conducted and On-Going Power Assessments FY04 - FY05

V CORPS

18th Airborne

Ground-Based Midcourse Defense Program Ballistic

Capabilities

S&T Experience

PM-MFP

Electrical, Electromechanical Mechanical Structural Applied Science Signature Suppression (Noise/IR/EMI) Environmental (25 F to 120 F) Project Management / Procurement ACQ

Systems **Assessment**

Power Assessment Power Distribution Grid Layout Design

Fabrication

Drafting (Concept) Machine Shop Paint Shop Proof of Concepts

Testina

Endurance Electrical (MIL-STD-705) Environmental (High/Low Temperature) Data Acquisition

Engineering Data

Test Reporting Technical Manuals Training Performance Specification Development

Palm Power Portable Shield PM-TOC Command Post Platform, 10 kW APU, APU / ECU ONR Technical Base Engineering Support

Night Vision Camera Aided Monitoring Systems - 3 versions NATICK CBPS, SBIR Technical Support

DOT-FRA Advanced Locomotive Power System

Small Tactical Electric Power: 500 - 2000 W Advanced Medium-sized Mobile Power Sources TOG / DoD STD Life Cycle Congressional Plus Ups DARPA Stirling & Steam based Power Sources: 0.4-2.0 kW SOCOM PEO IPO-RD

The Power Generation Branch Supports the Following Organizations

System Development / Demonstration: 5 - 60 kW

Power Assessments

Power Generation Branch

Army Power Division

ß

TEAM C4ISR

Automated Power Distribution Tools/Software

Computer Model

Phased Approach

Software for TOC Design

- 1) Upgrade to Windows 2000 Compatibility
- 2) Easier User Interface and Load Balancing
- 3) Will be Web-Enabled for Ease of Use

Mission Statement:

To conduct Research, Development and Engineering activities leading to the advancement of Power Generation Systems to support unique mission requirements

Concept Development (6.1-6.2)

Concept Development (6.4-6.5)

Soldier Power 1-20 Watts

Hand Crank

Initial Objectives Achieved!

 Power: 10-20W · Weight: 1 lb. Size : 9 cu. in.

Potential Users:

· Land Warrior, Special Forces, and Large Commercial Market

Technology:

- State-Of-The Art Electomagnetics
- · Sintered NeFeB Magnets
- Optimized Motor Constant
- Digital Power Management System

Features:

- Selectable Voltage Output Range
- · User Feedback For Power Input, Output, Energy Output, etc.
- · Indefinite Supply of Power
- High Efficiency 88% (17W Input / 15W Output)

Future Force Power 0.5 kW - 2.0 kW (ATO IV.LG.2005.02)

Objective: To develop component technologies for power systems for increased mission duration while decreasing logistics burden at a system level

Goal: Tactical power systems that address the emerging military need for man-portable, JP-8 fuel burning power in the 500 to 2000 W range with periodic silent operating capability and cogeneration capability.

Power Electronics

< 2 kW Stirling Engine Driven System

Technologies of Interest:

- Stirling Power Systems
- Fuel Cell Power Systems
- · Advanced Power Control and Conditioning

Advanced Research and Development Test and Evaluation

Small Tactical Electric Power 0.5 kW - 3.0 kW (STEP)

Objectives:

- · To investigate / test / evaluate:-- Commercial power sources
- Emerging power technologies and their integration with state of the art commercial technology

That address the emerging military need for man-portable, JP-8 fuel burning power in the 500 to 3000 W range with periodic silent operating

< 1 kW Stirling Engine

1 kW Fuel Cell System

5 - 60 kW

Market Surveys

Systems Development and Demonstration:

- Advanced COTs power generation components/systems
- Data Acquisition and Datalogging Equipment

10 kW Inverter Development

- Smaller/Lighter Alternative to Auxiliary Power Unit (APU)
- Powered by Under-Hood 400A Alternator

Wetstacking Kit Development

- Technology Transition from HBCU effort w/New Mexico State
- Objective is to Eliminate Wetstacking at Low Loads Without Impacting Fuel Consumption
- Closed-Loop control of Combustion Temperature through Intake throttling

Integrated Environmental Control and Power System (ECAPS)

- Proof-of-Concept System Development
- · Variable-Speed Engine
- Variable-Speed DC Motor-Driven Compressor
- · Load Following Compressor vs. On/Off Approach
- Minimal Transient Loading

Micro Turbines

- · High Power to Weight Ratio
- High Reliability
- Low Noise < 65 dBA
- Low Maintenance

Advanced Power Electronic Subsystems

Portable Electric Power 0.5 kW - 3.0 kW

Tactical Inverter:

Uses DC power from any Military Vehicle based NATO slave receptacle and converts it to AC power

Application: Power on the Move or Silent Watch

System: Multiple, Modular, Parallelable Portable Boxes

Output: 2.5 kW to 10 kW continuous power, 120 VAC, single

phase, 60 Hz in multiple power increments of 2.5 kW

Technologies

of Interest:

· Advanced Electromechanical

Power Components/Systems

· Stirling Power Systems

· Fuel Cell Power Systems

· Variable speed JP-8 fuel burning Gen Set

Advanced Variable Speed Generator Set

- Based on the results of Army S&T work
- High Speed Engine / PMG
- Power Electronic Controls & Conditioning
- Selectable Frequency (50/60/400 Hz)
- Selectable Voltage Connection (120/240/415 V AC)
- Advanced Materials: SiC & Composites
- Diagnostics / Prognostics
- Integrated Anti Wet Stacking Device

High Efficiency 92% - 95%

Reduced Fuel Consumption

